import pandas as pd from EncoderManager import EncoderManager def main(): # Define example data data = { 'Color': ['Red', 'Blue', 'Green', 'Red', 'Green', 'Blue'], 'Gender': ['Male', 'Female', 'Male', 'Female', 'Male', 'Male'], 'Size': ['M', 'S', 'L', 'M', 'XL', 'M'], 'Species': ['Dog', 'Cat', 'Bird', 'Dog', 'Bird', 'Cat'], 'Count': [2, 1, 3, 4, 1, 2] } df = pd.DataFrame(data) # Define encoding parameters label_cols = ('Gender','Species') ordinal_cols = ('Size',) onehot_cols = ('Color',) # Create encoder manager encoder = EncoderManager(df, label_cols, ordinal_cols, onehot_cols) # Test encoding encoded_df = encoder.encode(inplace=False) print("Encoded DataFrame:") print(encoded_df) # Test decoding decoded_df = encoder.decode(inplace=False) print("Decoded DataFrame:") print(decoded_df) df_normalized = encoder.normalize('min-max', inplace=True).get_df() print("Normalized DataFrame:") print(df_normalized) if __name__ == "__main__": main()