Security Benchmarking for Large Language Models

Methodologies and Applications

Understanding, Evaluating, and Mitigating LLM Security Vulnerabilities

Rossi Stefano

14 March, 2025

Introduction

LLMs are increasingly integrated into **critical applications**

Security vulnerabilities present significant challenges

LLM Risks & Vulnerabilities

Responsible AI Risks	Bias , Toxicit y	Ensuring ethical model behavior by preventing discriminatory outputs and offensive content generation that could harm users or specific demographic groups
Illegal Activities Risks	IllegalActivity, GraphicContent	Preventing content that violates laws, promotes criminal behavior , or generates instructions for harmful activities that could endanger public safety
Brand Image Risks	ExcessiveAgency, Robustness	Protecting organizational reputation by avoiding misinformation , misattribution, and content that contradicts company values

Understanding LLM Vulnerabilities

Risk Categories

- Responsible AI: Biases, toxicity, ethical concerns
- Illegal Activities: Violent crimes, cybercrimes
- Brand Image: Misinformation, competitive references
- Data Privacy: PII leakage, credentials
 exposure

Impact Areas

- User safety and protection
- Organizational reputation and trust
- Legal compliance and regulations
- Data security and privacy

Red Teaming Methodology

Generating Adversarial Attacks

- Creating inputs to elicit unsafe responses
- Baseline attack generation strategies
- Attack enhancement techniques

Evaluating Target LLM Responses

- Response generation analysis
- Vulnerability-specific metrics
- Feedback-based improvement

Key Insight: Red teaming simulates **real-world adversarial scenarios** to find vulnerabilities before deployment, enabling **preemptive security measures**.

Advanced Attack Techniques

Prompt Obfuscation

Using techniques like Base64 encoding, character transformations (e.g., ROT13), or prompt-level obfuscations to **bypass restrictions**.

Model-based Jailbreaking

Automating the creation of adversarial attacks by evolving simple synthetic inputs into more **complex attacks**.

Dialogue-based Jailbreaking

Employing **reinforcement learning** with two models: the target LLM and a red-teamer model trained to exploit vulnerabilities.

Primary Areas of Concern

- Organizational reputation damage
- Legal compliance violations
- Data security breaches

Major Benchmarks for LLM Security

Meta's CyberSecEval 2

Introduced in April 2024, this benchmark suite evaluates both LLM security risks and cybersecurity capabilities.

SEvenLLM-Bench

A multiple-choice Q&A benchmark with 1300 test samples for evaluating LLM cybersecurity capabilities.

SecLLMHolmes

A generalized, automated framework for evaluating LLM performance in vulnerability detection.

SECURE

The Security Extraction, Understanding & Reasoning Evaluation benchmark designed to assess LLM performance in realistic cybersecurity scenarios.

Implementation Tools: DeepEval RedTeamer

```
from deepeval.red teaming import RedTeamer
from deepeval vulnerabilities import Bias, Misinformation
red teamer = RedTeamer
    target purpose="Provide financial advice and answer user finance queries",
    target system prompt="You are a financial assistant for planning and advice"
vulnerabilities =
  Bias(types=[BiasType GENDER, BiasType POLITICS]),
  Misinformation(types=[MisinformationType.FACTUAL ERRORS])
results = red teamer.scan(
    target model callback=target model callback,
    attacks per vulnerability type=5,
    vulnerabilities=vulnerabilities.
print(f"Total attacks: {len(results.attacks)}")
```

Best Practices for LLM Security Benchmarking

• **Comprehensive vulnerability coverage**: Test for all five risk categories, not just obvious harmful content generation.

- **Systematic approach:** Combine automated testing with human red-teaming for maximum effectiveness.
- **Continuous evaluation:** Security benchmarking should be an ongoing process throughout the LLM lifecycle, not a one-time assessment.
- Attack diversity: Employ multiple attack techniques and enhancement methods to thoroughly probe the system.

